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Abstract 

By computer simulation, two autoregressive 
panels x and y are generated, defined recursive- 
ly by the relations xit -1 + 

yit -1 + cyxxit -g + vit, where u and v 

are uncorrelated disturbances, 1 

1 are the autoregressive coefficients, and 

cyx represents the causal effect on y of a prior 

x over causal interval g. 
With simulated data the correlogrm of cross - 

correlations r(xit' where k represents any 

measurement lag, exhibited an expected asymmetric 
shape: correlations were higher when y was meas- 
ured later than x. However, it was also observed 
that greater stability in either variable (higher 

or pyy) produced higher cross- correlations -- 

an apparently stronger causal connection. Another 
counter -intuitive observation was that, for car - 
tain high levels of and pyy, the cross- corre- 

lation was maximum not over causal interval g but 
rather after some delay beyond g. 

By assuming stationary properties, it has 
been possible to apply the procedures of path 
analysis to derive expressions which are identical 
with previous derivations by Lew, at the same time 
making it easier to grasp the model and explain 
its peculiar features. 

Origin of inquiry 
The present investigation originated in an 

inquiry more than six years ago by the senior 
author and a colleague at the Survey Research 
Center D] on the use of lagged correlations be- 
tween two variables measured at two points in 
time, as a possible means of detecting direction 
of causal influence between the variables. It 
seemed intuitively plausible that if a change in 
variable x at time 1 produced a change in the 
same direction in variable y at time 2, then the 
lagged correlation between xi and should be 

larger than the corresponding lagged correlation 
between yl and x2. Independently, Campbell and 

his associates arrived at the same conjecture 
C1,23. 

Efforts to find mathematical support for 
this conjecture in the time series literature 
were unsuccessful, although at a later point 
Goldber r (personal correspondence, 1969); [and 
3, p. 33J indicated a rather simple way of doing 
so. As a heuristic device, therefore, the senior 
author decided to simulate artificial time series 
data having known characteristics for a popula- 
tion of hypothetical individuals, in order to in- 
vestigate how the introduction of known causal 
influence would affect the lagged correlations be- 
tween variables. Spyros Magliveras devised a 
program to generate two artificial variables x and 
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y for ,a set of N individuals over 50 periods of 
time.' 

A legitimate question is raised as to whether 
the same results might not have been generated di- 
rectly by mathematical analysis. In answer, we 

hope that analysis can eventually do the entire 
job, but meanwhile the simulation has been useful 
in demonstrating certain properties that were not 
obvious even to time series authorities, and which 
have been demonstrated analytically only with con- 
siderable labor.3 

The simulation model 
The present paper will deal with the simplest 

situation with two variables. For N individuals, 
independent variables x is determined only by its 
own prior value and by random outside disturban- 
ces; dependent variable y is also generated as a 
function of its own prior value and a different 
set of random disturbances, and in addition z ex- 
erts a uni- directional influence over a subsequent 
y after a specified causal interval g. 

For each individual i in a population of N 
individuals, two time series zit and yit gen- 

erated at times t 1,2,3,... in successive oper- 

ations of the computer program, by the recursion 

equations 

(1) xit it -1 + uit 

(2) rit pyyrit -1 + -g + vit 

where u and v are random disturbances uncorrela- 
ted across individuals and across time, 1 

and 1 are the respective autogregressive 

coefficients, and is the causal coefficient 

representing the effect on y of the x value for 
that individual which occurred g time units ear- 
lier, g being the causal interval .4 

The coefficients and are equal to 

the theoretical autocorrelations between 

cent values of the Markov series xt and yt 

pp. 405 ff.J. They will be called coefficients 

of "short -term stability." 

The model also permits incorporation of 

"long -term stability" consisting of individual 

constants for each individual and iy, which 

remain unchanged through time. There is not 

space here to discuss the latter; the reader is 

warned that effects of the two sources of sta- 

bility are markedly different.5 

unexpected features 

From tima series data thus generated, one 

can obtain three sets of correlations between 

pairs of variables across N individuals, where 
measurements of the variables in each pair is 
separated by an interval designated k. Two of 

the sets are the autocorrelations r(xit,xit+k) 

and the third set is the cross- 

correlation where measurement lag 



k can be any positive or negative integer 0, 1, 

2, 

It is instructive to compare the behavior of 
these correlational functions with what was ex- 
pected in advance. The time -series literature 

indicated that for independent variable x the auto - 
regressive correlogram (i.e., the plot of auto - 

correlations p(xit,xit+k) as a function of meas- 

urement interval k, where the symbol p designates 
the theoretical correlation in contrast to the 
empirical value r) should be a declining expo- 
nential function of the form: per. The liter- 

ature gave no immediate expectation as to the 
autocorrelational function of y, although we as- 
sumed it would decline exponentially in much the 
same fashion as x. These expectations were con- 
firmed with the simulated data.° 

We could find no theoretical expectation for 
the cross -correlational function. An intuitive 
conjecture was that as measurement interval k ap- 
proached causal interval g, the cross -correlation 
between x and y would rise from zero to a maximum 
value at g, after which it would decline again 
toward zero. (These conjectures are illustrated 

in [7a, pp. 6 -10.) Under certain circumstances, 
a cross- correlogram of this shape did appear in 
simulated data, as illustrated in the bottom 
curve in Figure 1, where and are both 

set .70. 

In such a case, the phenomenon have called 
the "cross- lagged differential" (following a sug- 

gestion by Campbell) will appear. If one com- 
pares the cross -correlation when y is measured at g 
time units after x (in Figure 1, at the point k 
+4) with the corresponding correlation when y 

is measured g time units before x (at the point 
k - -4) a distinct difference is observed. This 
differential may disappear, however, if the meas- 
urement interval departs substantially from true 
causal interval. (In the bottom curve of Figure 
1, e.g., there is no difference in height of the 
curve at k +15 and -15). 

In advance of the simulation, we were.uncer- 
tain what effect an increase in stability would 
have on the cross -correlations. It seemed likely 
[7, p. 45] that extremely high stability of either 
short -term or long -term character (see footnote 5) 

might cause the cross- correlogram to rise and fall 

causal interval 

and 

.95 

.90 

.70 

1 / 
Ì / o 
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I 

-25 -20 -IS -10 -5 0 S 10 25 

measurement interval 
Figure 1. As autoregressive stability and pyy) increased for sim- 

ulated variables x and y, the cross- correlations (1) became higher 
at point. g, (2) increased in duration, (3) were increasingly de- 
layed in reaching a maximum height beyond causal lag g. All curves 
used a constant causal coefficient (cyx .10). (From p. 36.) 
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very slowly, and thus would obscure the cross -lag- 

ged differential. 
When simulated data were generated and cross - 

correlations examined, surprising departures 

from expectation appeared when high autoregressive 

coefficients or were used. The reasons 

for these departures were not intuitively obvious, 

but it is hoped that the mathematical analysis re- 

ported below will clarify them. 

1. The higher the autoregressive coeffic- 

ients (that is, the higher the short -term stabil- 

ity) the larger was the cross -correlation which 

appeared at causal interval g, and the sharper was 

the cross -lagged differential. Note in Figure 1 

the increasing height of the cross- correlograms at 

k g 4, as and were increased from .70 

to .95. 

Thus in terms of the observed correlation 
between x and y, the causal influence appeared 
to become stronger, even though the actual co- 
efficient of causal influence (cyx) remained 
constant. 

2. The higher the stability coefficients, 
the longer the cross -correlations persisted 
through time, over measurement lags several times 
longer than the causal interval. Thus in Figure 
1 if one measures the cross -lagged differential- - 
the difference in height of the correlogram at 
points and -k respectively --in the bottom 
curve the differential has disappeared at k ±15. 

But in the top curve the differential is substan- 
tial even at k 25, and by extrapolation it 
appears to persist to k + 50 beyond. 

Thus high autoregressive (or short -term) sta- 
bility served to to magnify and to perpetuate the 
observable effects of causal influence. 

3. Counter to intuitive expectation, the 
point of maximum cross -correlation was not neces- 
sarily at the point of actual causal impact (caus- 
al interval g). Rather, the higher the autoregres- 
cive coefficients, the greater was the delay be- 
tween g and the point of maximum cross- correla- 
tion. In Figure 1, when the stability coeffic- 
ients were extremely high (both .95) the cross - 

correlation was maximum at an interval of from 10 
to 15 time periods after the causal interval. 

4. We had expected that a cross -lagged dif- 
ferential would appear only if it took time for 
the causal effect of x to appear in y --that is, 
only if the causal interval were several time 
units (one "time unit" being the interval for 
the autoregressive effect to occur). This expec- 
tation was confirmed in the case of variables 
with low stability. The effect of shortening g 
was simply to move the entire cross- correlogram to 
the left, without altering its shape. Thus, if 
the bottom curve in Figure moved 3 or 4 
time units to the left, it would become almost 
symetrical around k 0, and the cross - lagged 
differential would almost disappear. 

Note however that with high stability (mid- 
dle and upper curves in Figure 1), even if the 
curves were moved leftward so that g 0 

asymmetry would persist, and so would the cross - 
lagged differential. An important property e- 
merged: if the two time series were quite stable 
(in the short -term sense of high autoregressive 
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coefficients), the causal influence of x on y re- 
mained apparent even when the causation was almost 

simultaneous. 

Mathematical properties derived by Law. 

Robert Lew undertook the task of deriving 

mathematical properties of the simulation model. 

Like the model, he began with a finite starting 

point at which values for xit and Yit 
were gen- 

erated randomly for each of N individuals; 
correlated random terms uit and vit were added; 

and after g time -periods had passed the causal 

component cyxxit was added to the y variable. 

When the mathematical equivalent of this model 
was in operation over a long time certain terms 
vanished, and the equations could be expressed 

in asymptotic form. 
The basic expressions for autocorrelations of 

xit and and for the cross -correlations xy, 

are given in a technical note to Pelz and Lew E6] 
and in full detail in appendices of the interim 
report [7]. Law's expressions generate theoret- 
ical autocorrelations and cross -correlations 
which parallel very closely the empirical curves 
produced by simulation such as those in Figure 1. 

Lew also derived a prediction of phenomenon 
3 noted above, that when autoregressive coeffic- 
ients are high, the maximum cross -correlation 
will appear with delay following causal in- 
terval g, as illustrated in Figure 2. 

Theoretical properties derived 
from application of path analysis 

Co- author Faith has conceptualized our time 
series model in terms of a path analysis model 
which is fully described in the technical appen- 
dix. The path diagram is given in Figure 3. 
Variables x0 and are specified as the cor- 

related inputs. From these, together with the 
residual disturbances u and v, new variables xt 

and are defined by the following recursive 

path formulas: 

(3) +l + +l + 0(all variables 

where s t) 

(4) PyyYt+g -1 + + 0(all 

variables xs, where s t) 

for t 0,1,... 

These are similar to the basic simulation equa- 
tions (1) and (2) given above, when operating 
over an extended time period. 

Contrary to Lew's approach of assuming an 

arbitrary set of initial conditions which gradu- 

ally stabilize, the path model assumes a system 

that is stationary from the outset. This assump- 

tion is achieved by a suitable restriction of the 

parameters of the model (notably the causal path 

coefficient p in expression (4), and the cor- 

relation between the variables regarded as im- 
puts.) 

It is deduced that under the specified con- 
ditions, the autocorrelations and cross- correla- 



I 

.3 .5 .6 .8 .9 

Figure 2. As autoregressive stability of the two variables increases, so 
does the theoretical expectation of delay between the causal lag 
and the measurement lag at which the xy cross -correlation is max- 
imum. Thus, where and both - .9, a delay of 4 time units 

can be expected. (From p. 41). 
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Figure 3. Path diagram of independent variable x and dependent variable y, 
governed by recursive relations (3) and (4) in technical appendix. 
Although yg is plotted below g can take any value. 

tions for the x and y variables are depdndent only 
on the time interval k over which the measurements 
are taken. 

The values of these correlations are predic- 

ted from the path coefficients by the rules of 

path analysis. The computation of the cross -cor- 

relations of particular interest. 

We find that these are governed not by a single 
formula but rather by two. One formula applies 

to cross -correlations for which measurement in- 
terval k is less than the causal interval g, and 
the other applies where k is greater than g, as 
illustrated in Figure 4. (The two expressions 

give the same correlation for k g.) The deri- 

vation of the cross -correlation formulas is fa- 

cilitated if one considers not the actual meas- 
urement interval k, but rather the amount by 
which k differs from g, defined as k' Ik -gi. 

Consider first that part of the cross -cor- 

relation to the right of g (i.e., k > g). In the 
technical appendix it is shown that the expres- 

sion for this part of the cross -correlation is 

given by appendix formula (7c): 

- -1) + -1) 

Let us examine the two components after the 
equal sign in this expression. If the cross -cor- 
relation were determined only by the sec- 

ond component, it would be lower than the cross - 
correlation over the previous lag (rxy(k' -1)), 
since, the latter term is multiplied by 
which is less than unity. However, the cïbss- 
correlation is increased at the same time by the 
first component, which depends on the size of 
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the causal coefficient and also on the size 

of When the first component adds more than 

the second caaponent removes, the cross- correla- 
will rise from one tima period to the next. 

Otherwise it will fall. 
The technical appendix specifies the con- 

ditions (see expressions (16) and (17)) under 
which the cross -correlation will rise following g. 

Let us return to that part of the cross -cor- 
relation to the left of g (i.e., k < g). Expres- 
sion (13b) in the appendix shows that this por- 
tion is given by a relatively simple exponential 
function 

(-k') ryx(k' ) 
pyx k' 

1 - 

which rises steadily as measurement interval k 
approaches g. 

Relative influence of stability in x or y 
We saw in Figure 1 that as the autogreres- 

sive stability of both x and y increased, the xy 
cross -correlation became more asymmetrical around 
causal interval g. It is appropriate to ask 
whether this asymmetry is produced more by sta- 
bility in x or by stability in y, or equally by 
both. 

A partial answer was seen in Figure 2, show- 
ing the relative effect of the two autoregressive 
coefficients on the amount of delay in the maximum 
cross -correlation. The reader will observe that 
if variable y has only moderate stability (such 
as .70), then even a very high stability in 

x will produce a delay no greater than 1 time unit. 
In contrast, if variable x has the same moderate 



causal interval . - 
E-where where k > 

I I 

measurement interval k 

Figure 4. Formula for cross -correlation is composed of two parts, one 
where measurement interval causal interval g, the other where 
kg. Expressions for and rxy(k') are given in text and 
appendices. 

stability .70), then increases in stabil- 

ity of y can produce delays up to 5 or more time 
units. 

Hence it appears that the stability of de- 
pendent variable y is more critical than that of 
independent variable x, In producing asymmetry 
and delay in cross -correlations. (It is also true 
that for much longer delays of 8 or more time 
units, both x and y must be highly stable.) 

A more complete answer can be given with the 
theoretical expressions derived in the appendix. 
These have been used to generate four cross -cor- 
relograms plotted in Figure 5. The bottom curve 
uses moderate stability in both variables 

.70) and is very similar to the bottom 

curve in Figure 1 for simulated variables using 
the same parameters. The top curve, with very 
high stability in both variables (per 

.95), is again similar to the top curve Figure 

1 with the same parameters. 

The two middle curves show what happend when 
stability of the two variables is allowed to dif- 
fer. When x is the more stable .95, 

.80), the correlogram rises and falls gradually, 
with only slight asymmetry. When the two para- 
meters are reversed and y is the more stable 

.80, .95), the correlogram rises 

abruptly and is markedly non -symmetrical. Again 
it is clear that stability in the dependent var- 
iable is mainly responsible for the peculiar prop- 
erties of asymmetry around g, and delay. 
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In conclusion 
Simulated time series were created in which 

independent variable x was allowed to exert a 
causal.influence on dependent variable y over 
causal interval g. Certain puzzling features of 
the simulated data are explained by application of 
a path analysis model. Specifically it is shown 
that when autoregressive stability of both varia- 
bles is increased: 

1. The cross -correlation between x and y be- 
cames strange; at the interval of causal 
influence, g. 

2. The cross- correlogram becomes asymmetrical 
around g --that is, the correlations re- 
main higher following g than preceding it, 
so that the cross -lagged differential per- 
sists over a longer measurement interval. 

3. The point of maximum correlation between 
x and y is increasingly delayed beyond 
g. (Features 2 and 3 are found to result 
especially from stability in the depen- 
dent variable y.) 

Finally, from the path equations, it is clear 
that when autoregressive stability is high (espec- 
ially in the dependent variable): 

4. The asymmetric effect of causal influ- 
ence remains the same regardless of 
whether the causal interval is long or 
short; hence causal influence could be 
detected even when simultaneous. 
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Figure 5. Theoretical cross -correlations based path model. High sta- 

bility in the dependent variable y (third curve) produces sharper 
asymmetry than does an equally high stability in the independent 
variable x (second curve). (The causal coefficients for the bottom 
three curves were set at pyx .10; for the top curve .06.) 

FOOTNOTES 

1 The initial simulation was performed under a 
grant from the National Science Foundation (GS- 
1873), with supplementary aid from the National 
Broadcasting Company. The original simulation 
program was written by Spyros Magliveras, and 
was revised by Robert A. Lew, assisted by George 
Gluski. Lew also derived the main mathematical 
properties of the model. The mathematical exten- 
sions reported here were supported by grants from 
the U.S. Office of Education (Grant No. -5 -9- 
239459 -0076) and National Science Foundation (GS- 
2710). 'Omitted here is the technical appendix 
by Faith which was handed out at the ASA session. 
A copy of the full paper including appendix may 
be obtained by writing the senior author. 

2 Fruitful guidance was given by Graham Kelton, 
visiting lecturer in sociology and sampling sta- 
tistics from the London School of Economics, in 
helping to structure the simulated model and de- 
termine acme of its properties. 

3 Subsequently a more complex simulation program 
has been prepared which can. generate up to 10 
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variables, each of which can exert a causal in- 
fluence on any other, over any specified combi- 
nation of causal intervals. This program was 
developed by Robert A. Lew with the assistance of 
George Gluski, primarily with support from the re- 
search department of the National Broadcasting 
Company. 

4 
The u and v components are not the same as 

measurement error; unlike the latter they become 
incorporated in xit and yit respectively and 

hence enter into subsequent values. The two - 
variable simulation model does not allow for meas- 
urement error; all values are assumed to be per- 
fectly reliable or "true scores." To maintain 
stationary variance in xit over time, 1, 

and variance of mit (1 -per) alit; correspond- 

ing limitations are imposed for and vit. 

5 With many real social data it is inappropriate 
to assume a simple Markov process in which the 
value at time t depends only the immediately 
prior value at t -1. Rather, each individual is 
likely to have an enduring tendency to persist at 



the same level through time -- equivalent to the 
effect of individual differences in intellectual 
ability, personality, or socio- economic background. 
The contrast between the "short -term stability" of 
the simple Markov process and "long -term stabil- 
ity" introduced by stable individual differences is 
demonstrated briefly in Pelz and Lew [6] and in 
more detail in 

autocorrelations were in fact higher for the 
dependent variable than predicted from the value 
of the exact function was subsequently de- 

rived by Lew. 

7 The technical appendix is omitted here for lack 
of space. A copy may be obtained by writing the 
senior author. 

8 This property is governed equally by stability 
in either variable. The reader may observe in 
Figure 5 that the two middle curves cross at g. 
That is, a given pair of autoregressive coeffic- 
ients assigned to either x or y will have the same 
effect on the size of cross -correlation at g. 
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